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Abstract—The purpose of this paper is to present flow and heat transfer results obtained by a point succes-
sive over-relaxation method for steady fully developed laminar flow in curved rectangular channels under
the thermal boundary conditions of axially uniform wall heat flux and peripherally uniform wall tempera-
ture at any axial position. The numerical method yields solutions up to a reasonably high Dean number for
the aspect ratios y = 0-2, 0-5, 1, 2 and 5 considered in this study. It is noted that perturbation method is
applicable only for relatively low Dean number region and boundary-layer technique is valid only for high
Dean number regime.

Graphical results for f Re/(f Re), and Nu/(Nu),, respectively, vs. Dean number are presented for
Pr = 0-73. Typical examples for axial velocity and temperature profiles, streamlines and velocity profiles
for secondary flow and isotherms are also shown. For square channel, the effect of Prandtl number on heat
transfer result is also investigated. Comparison of the result from this analysis and the result for high Dean
number regime for the curved square channel available in the literature shows clearly that reasonable
estimate can be made for the flow and heat transfer results for the Dean number ranging from 150 to 1000

where currently accurate solutions are not available,

NOMENCLATURE Nu, Nusselt number, hD,/k ;
width of a curved rectangular chan- n, dimensionless inward-drawn nor-
nel; mal or nth iteration for superscript ;
height of a curve rectangular chan- P, pressure;
nel; P,, axial pressure distribution meas-
constant, C,D3/4vy; ured along the centerline and a
axial pressure gradient, —dP,/0Z ; function of Z only;
axial temperature gradient, 0T/0Z; P, pressure deviation which is a func-
equivalent hydraulic diameter, tion of X and Y only;
2abf(a + b); Pr, Prandtl number, v/a;
function defined in equation (12); R, radius of curvature of a curved
function defined in equation (15); rectangular channel;
friction factor, 27,/(pWw?) or a Re, Reynolds number, D, W)v;
dummy variable ; r, dimensionless radius of curvature
dimensionless grid spacing, of a curved rectangular channel,
a/MD, = bj2ND,; R,/D,;
average heat transfer coefficient ; T, local temperature ;
Dean number, Re(D,/R)}, see T, wall temperature ;
equation (21); U,V, W, velocity components in X, Y and
thermal conductivity ; Z directions;
number of divisions in X-direction ; u,v,w, dimensionless velocity components

number of divisions in Y-direction ;
a7

in x, y and z directions;
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X, Y Z, Cartesian coordinates;

X, ¥, dimensionless Cartesian coordin-
ates.
Greek letters
o, thermal diffusivity;
¥, aspect ratio of rectangular channel,
a/b;
g, a prescribed error;
0, dimensionless temperature differ-
ence;
i, viscosity ;
v, kinematic viscosity;
g vorticity, éV/0X ~ ¢U/0Y;
0, density;
Ty mean shearing stress at wall;
v, dimensionless stream function;
w, relaxation factor;
V2, dimensional or dimensionless Lap-
lacian operator.
Subscripts
i, space subscripts of grid point in
X and Y directions;
0, value for straight channel ;
w, value at wall.
Superscripts
n, nth iteration;

-, average value.

1. INTRODUCTION

THE EFFeCTS of body forces such as buoyancy,
centrifugal, Coriolis and magnetic forces on flow
and heat transfer characteristics in pipes or
channels of various cross sectional shapes have
been the subjects of many investigations in
recent years. The forced convection problems
with body force effect are frequently encountered
in various heat exchangers, cooling or heating
systems, reactors and heat engines. A number
of combinations concerning the kind of body
forces and the geometrical shape of the flow
passages are possible in practical forced convec-
tive heat transfer problems. Trefethen [1]

pointed out that secondary flow patterns in
rotating radial tubes, heated horizontal tubes
and curved tubes are qualitatively similar since
the double helix secondary flows are caused by
unbalanced body forces within the fluid.

Under certain conditions, a secondary flow
due to body forces will not be established until a
critical value of the characteristic parameter
based on body force and the flow field is reached.
The stability problem relating to the onset of
the secondary flow has also attracted much
attention in the past. For a flow in the curved
rectangular channel, the critical value of the
characteristic parameter (Dean number) is zero.
The literature on flow and heat transfer in curved
pipes is very extensive because of its technical
importance. A literature survey and review of
the pertinent works in this connection is given
in [2]. In contrast to the number of published
papers dealing with flow and heat transfer in
curved pipes, the published works relating to
flow and heat transfer in curved rectangular or
other noncircular channels are rather limited in
spite of its significance in practical applications.

The purpose of this work is to present an
accurate numerical solution on forced convective
heat transfer for steady fully developed laminar
flow in curved rectangular channels with various
aspect ratios under the thermal boundary
conditions of axially uniform wall heat flux and
peripherally uniform wall temperature at any
axial position. Both Ito [3] and Cuming [4]
presented theoretical analysis for flow in curved
pipes of elliptic and rectangular sections using
perturbation method. Dean and Hurst [5]
obtained some analytical results for laminar
flow in curved square channel by assuming
uniform stream for secondary flow. Using
boundary layer approximation along the wall,
Ludwieg [6] presented analytical results for
friction factors for fully developed laminar flow
in helically coiled square channels rotating
around its axis. Extensive experimental data
covering both laminar and turbulent flows are
compared against the theoretical results for
laminar flow only with good agreement. Ex-
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perimental results for friction factors are also
presented for the case of stationary curved
square channel with laminar and turbulent
flows. Eichenberger [ 7] analysed entrance region
problem in a curved rectangular channel with
secondary flow by assuming an inviscid flow.
Kapur et al [8] and Topakoglu [9] considered
fully developed laminar flow in curved annuli.
Experimental investigations on fully developed
turbulent flows in a plane curved channel
between concentric circular walls were reported
by Wattendorf [10] and Eskinazi and Yeh [11]
and turbulent heat transfer by Kreith [12].
Ustimenko et al. [13] presented flow and heat
transfer results for fully developed laminar flow
in curved flat channels with different ratios of
heat fluxes at the inner and outer walls neglect-
ing secondary flow effect.

Using boundary layer approximation, Mori
and Uchida [14] presented analytical results for
fully developed laminar flow in a curved square
channel under the thermal boundary condition
of axially uniform wall temperature gradient.
Their results for flow and heat transfer are
applicable only for the regime where Dean
number is large. Velocity and temperature fields
were obtained by dividing the cross section into
core and boundary regions and considering the
balances of kinetic energy and entropy produc-
tion for the boundary layers. Mori and Uchida
[15] also carried out theoretical investigation
on forced convective heat transfer for fully
developed laminar and turbulent flows in a
curved channel under the condition of constant
wall heat flux and compared the results with
experimental measurements.

It is quite clear from the above brief review
that more theoretical and experimental works
are certainly required to bring our knowledge
of flow and heat transfer in curved channels
comparable to the level provided by the rather
extensive data relating to flow and heat transfer
in straight channels. It will be shown that the
numerical method complements the boundary
layer technique for high Dean number regime
and yields accurate solution up to a reasonably
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high Dean number region for the aspect ratios
y = 02,05, 1, 2 and 5 considered in this study.

2. FORMULATION OF THE PROBLEM

Consider a steady hydrodynamically and
thermally fully developed laminar flow of
viscous fluid in a curved rectangular channel
under the thermal boundary conditions of
axially uniform wall heat flux and peripherally
uniform wall temperature at any axial position.
The following assumptions are made in the
analysis.

1. The radius of curvature of the rectangular
channel is large compared with the hydraulic
diameter of the cross-section of the channel.

2. Physical properties are constant.

3. Viscous dissipation is negligible.

Taking the origin of the rectangular coordin-
ates (X, Y, Z) at the center of the rectangular
cross-section as shown in Fig. 1 and applying

Y
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F1G. 1. Coordinate system and numerical grid for a curved
rectangular channel.

the assumptions stated above, the governing
equations for the present problem are;
Continuity Equation :

ou  ov

7%t a7 = O (1)
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Momentum Equation for Secondary Flow:

4s 49 ) 8 (W?
Ué‘}+ V~— YWeE — 6Y< ) (2)
where
oV U
¢= 5% 7y

Axial Momentum Equation:

U‘Z—V;Jr V%I;,K= —%%}?ZﬂJr Wi, (3)
Energy Equation:
Ug;,,_;/% Wg%=aV2T 4
The pressure at any point consists of two parts as
P = Py(2) + P'(X,Y). (5)
Boundary Conditions:
U=V=W=T-T,=0atwall
g(}f % = 0 along centerline Y = 0. (©)
Introducing the following transformations,
X=Dx Y=D,y, R, =D,r, U=(v/D,w,
= wC/Dw, T — T, = (C,D,PrC)b,

OPy/0Z = — C,,3T/0Z = C,,

where D, = 2ab/(a + b)

and a dimensionless stream function ¥,
u=20y/dy, v= —0y/ox, (7

the governing equations may be restated in the
following dimensionless forms.
Momentum Equation for Secondary Flow:

C,D3 /4y = C

61# 8 V2 oy 0
G S v
By ox vy 9% 0y 4
C? ow?
VZ 2 i
VT ®

Axial Momentum Equation:

oy ow Ay ow

S — L —=V? 4, 9

dy 0x Ox 0y + )
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Energy Equations:
oy o0 oy oo )
¥ <6y I Bx 6y> Vi —w (10)

Because of symmetry with respect to the
X-axis, it is only required to consider the lower
half of the rectanguiar cross-section (see Fig. 1).
Consequently, the boundary conditions are:

0

lﬁ al// = w = 0 = 0 at channel wall

ox ﬁy

oy _ oMy _ow_a0_ ()
ox 6y 6y dy

along centerline y = 0.

The above set of equations constitutes a
formal mathematical statement of the problem
under consideration. In contrast to the forced
convection problem with buoyancy effect, one
notes that for the problem at hand, the momen-
tum equations and the energy equation are
uncoupled. It is possible to solve the above set
of equations analytically by perturbation method
as demonstrated in the literature for similar
problems [3, 4], but the process is very tedious
and the solution quickly diverges with the
increase of the Dean number. In view of the
considerable difficulties with the analytical
method, the numerical solution using convergent
iterative procedure will be presented in this
study.

3. NUMERICAL SOLUTION

3.1 Finite-difference approximation

In recent years, finite-difference methods have
been shown to be a powerful tool for the solution
of natural convection problems [16-19].
Recently, Cheng and Hwang [20] presented
numerical solution for fully developed com-
bined free and forced laminar convection in
horizontal rectangular channels using point
successive-overrelaxation method. In this study,
the point successive-overrelaxation method was
further extended to solve a set of elliptic partial
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differential equations and the associated boun-
dary conditions. One notes that the axial
momentum equation (9) may be regarded as

V2w =F, (u i aw) 12

'9x" 8

Using three-point central difference formula and
square mesh, the finite-difference equation for
equation (9) can be expressed as

1
Wii =3 (Wi+ it Wiegj+ Wiy
&2
+ We.;~1} iy

+ ,,J_“E’__J_ts:i%m ~ 4}. (13)

Wiryg ™ Wiegj
Hij 5h

Similarly, the finite-difference equation for the
energy equation (10) becomes

1
8= 2(9;*«»1,1' + 01y Ojra + 040

h? I JP:
— ._Z {Pr [ui’j_’_ii’:’..iﬁ.w R vl',j
 Quirs = iy ;ke"»f‘ ‘} +w, }.}* (14)

To obtain the finite-difference equation for
equation (8), one notes that this equation may
be regarded as the inhomogeneous biharmonic
equation in the following form.

d 2 & 0
2 2 e e —y ——— ——
ViV =F, [(@x’ ay) ¥, (ﬁx’ 6y)
ow
2 ———
x Vi, w, 6y]' (15)

Omitting the details, the finite-difference equa-
tion for the secondary flow stream function y at
the mesh point (i, j) may be obtained by double
application of the procedure transforming har-
monic equation (12} into its finite-difference
form. The result is
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4 h 4
= (ﬁ - 'ia“i,;) Vivg,j + (ﬁ

h 4 h
+ %ui’j) l!/g_ 1,5 “+ (’1*6 b ;O_vi,j) l/}i,j-f'"l
4 h i
+ (’.G + = 10 ;j)lﬁ:)*l + ( 2{}
40

h 1 h
+ g W, i+ ~ 55 T a0 4 Vi-a,j

1 h 1

+ “§6+40 ij !/,i,j+2+ 20
h + -~§-—+ —;iu
40 z; ‘;’;}—2 10 40 i,j
h 1 h

+ 40th ‘//1+1 j+1 + 10 40
h 1 h
40 ,}) ‘i‘(t'FI 1 + (.... “ﬁi - Zaui,j
h 1 h

+ 2000 Vicrjer + |- 0wt
h

h [(C?
l])wl—' 1,j=1 ™ 120( )wi.}

X (""‘ Wi,j-}«Z + Swi‘j.\ui il SWg’j_i

+ Wi-2) (16)
It is noted that for the derivative ow/dy in
equation (15), five-point difference formula is
used. It suffices to note that five-point difference
formula is used in computing secondary flow
velocity components u, v from equation (7). For
simplicity, the finite-difference expressions for
the boundary conditions will be omitted except
those along the horizontal center linei = 1,2,...
M+ 1,j=N + 1. These are

Win = Wine 2.0y = Oy Vin = — ¥ixea
*/’i,Nﬂ = —YivinWinsr = Uivsr =0

It is well to note that the finite-difference expres-
sion for the stream function at the mesh point
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next to the boundary takes special form after
satisfying the boundary condition for y.

3.2 Iterative method and point successive-over-
relaxation method

Point successive-overrelaxation method [21]
is used in solving each differential equation. The
iterative procedure employed is similar ro that
used in [19, 20]. The detail of the procedure is
given in [2]. The following test is used at the end
of each iteration to determine the convergence
of the computed function.

Max | f#, — f7 V| /max | f®] <e (17)

where fis a dummy variable and ¢ is a prescribed

error. Numerical experiment shows that the

following prescribed errors are satisfactory.
forw,

81 = 10—5 ij ‘Ill',j and gi,j
g, =5x 107  foru,;and v,

The effects of grid size on computing time, and
on flow and heat transfer results are studied in
[2]- The round-off error is found to be negligible
by using double precision in computation.
With the aspect ratio of the channel and
Prandtl number given, numerical solution starts
with Dean number K = 0 and proceeds gradu-
ally toward high Dean number regime. By
increasing the Dean number and maintaining
the same prescribed errors, the numerical solu-
tion is found to be convergent up to a reasonably
high Dean number; but starting at a certain
Dean number the secondary flow pattern
changes from the regular two vortices to four
vortices. The additional two weaker and smaller
vortices are located near the central part of the
outer wall. Numerical experiment also discloses
the existence of a pair of solutions (2 vortices and
4 vortices) for a given Dean number in high Dean
number regime. The conditions under which the
double-solutions were encountered, and the
details of the numerical experiment for secondary
flow pattern with four vortices are described in
[2]. Because of the uncertainties associated with
the double-solutions, the flow and heat transfer
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results for the Dean number range with this
peculiar behavior will not be presented.

When the magnitude of the secondary velocity
components exceeds 2/h, numerical results start
oscillation for a solution with regular two
vortices and finally the solution diverges. The
above situation occurs at a certain high Dean
number. One notes that the coefficient matrix is
diagonally dominant when |u; ;| or | v, ;| < 2/k.
On the other hand, the numerical solution with
four vortices is still convergent even when the
Dean number far exceeds the value indicated
above for the flow pattern with two vortices.
Eventually, the numerical solution with four
vortices also diverges when the magnitude of the
secondary velocity components (u, v) exceeds 2/h.

An example of computing time required may
be of interest. It takes about 138 min by IBM
360/67 to obtain a complete result up to
C?/r. = 017 x 10° for flow and heat transfer
withy = 1, M = 32, N = 16, and Pr = 0-71.

To improve convergence in the process of
iterations, a relaxation factor o is used. The
value of the factor w usually lies between 1 and 2.
A question naturally arises as to the optimum
value of the factor w,, that will yield a maximum
rate of convergence. Unfortunately, no general
method is available for the evaluation of the
optimum relaxation factor for the elliptic-type
partial differential equations with non-linear
terms as encountered in the present problem.
However, for the low Dean number region, one
would expect that the method described in [21]
may be applicable. In this study, the optimum
relaxation factor w,, for linear system is used
when the Dean number is zero or sufficiently
small. By using w,, = 1:75 ~ 1-82, considerable
computing time is saved. For the Dean number
ranging from small to intermediate values,
different relaxation factors for equations (13),
(14) and (16) are used after considerable numeri-
cal experiments. Some examples of relaxation
factors used are given in [2]. One notes that in
high Dean number region the relaxation factor
w = 1 is found by trial and error to be the best
value. Further details can be found in [2].
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4. FLOW AND HEAT TRANSFER RESULTS

4.1 Flow and heat transfer characteristics

It is possible to obtain the expressions for the
product of friction factor and Reynolds number,
SfRe, and the Nusselt number, Nu, by consider-
ingeither the velocity and temperature gradients,
respectively, along the channel wall or the overall
force and energy balances, respectively for the
axial length dZ. The results for resistance co-

6 1 l)w
_._.(._._..,.._

2
(fRe); = = ,(fRe)y = v (18)
The Nusselt number is defined by
Nu =2 (19)

where ki can be obtained in two ways. Using
mixed mean temperature difference, the results
are
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o9\ -
() W
{(Nu) ‘(w )‘ s (Nu)y 416;’3)"
The single or double integrations required for
the evaluation of the mean values are carried out
by using Simpson’s rule. For the evaluation of
the derivatives such as (Dw/dn), and (29/n),,
five-point formuila is found to be satisfactory.
The foregoing two methods of evaluating (f Re)
and Nu afford checking the accuracy of the
numerical results. One notes that the Dean
number can also be written as

2\ 3%
K= (Q) .
r{'

4.2 The effect of Dean number on velocity and
temperature fields

In order to see the effect of Dean number on

velocity and temperature fields, the dimension-

less axial velocity and temperature profiles along

the central horizontal axis Y = 0 and the vertical

(20)

o3y

o] 025 05
Yso

FiG. 2. Dimensionless axial velocity distribution in a curved square channel y = 1 with K as a parameter.
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FiG. 3. Dimensionless temperature distribution in a curved square channel y = | and Pr = 0-73 with K as a parameter.

axis X = 0 are plotted for a curved square
channel y = 1 with Pr = 0-73 for several repre-
sentative Dean numbers in Figs. 2 and 3, respec-
tively. Qualtitatively, the effect of centrifugal
force on the flow and temperature fields are
similar to the effect of buoyancy force for a given
geometrical shape of channel and thermal
boundary conditions at the wall. One can see
clearly that the effect of the centrifugal force is
to shift the location of the maximum value
toward the outer wall and decrease the maximum
value itself as the value of the Dean number
increases. It is expected that the profiles for the
velocity and temperature are similar.
Secondary flow streamlines and isothermals
for a curved square channel are shown in Fig. 4
for K = 51:9 and Pr = (-73. The location of the
center of circulation is of interest since one can
gain the general idea about the secondary flow
pattern and the intensity of secondary flow. For
a curved square channel, the X-coordinate of

05

025

Yoo
o

-0-25

025

[w]
U

Fic. 4. Secondary flow streamlines and dimensionless
isothermals for a curved square channel y = 1 with K = 519
and Pr = (073



LAMINAR FORCED CONVECTION HEAT TRANSFER

the center of circulation gradually moves from
X/a =0 toward the outer wall as the Dean
number increases and reaches about X/a = 0-1
at K = 45. With further increase of the Dean
number, the center of circulation tends to move
back toward the center X/a = 0. It is found that
with Dean number at about 125 the center of
circulation returns to X/a = 0. On the other

140
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hand, with the increase of the Dean number, the
Y-coordinate at the center of circulation always
moves toward the upper or lower wall indicating
increase of the intensity of secondary flow near
the upper or lower wall.

The distributions of the secondary flow
velocity components with the increase of the
Dean number are also of considerable interest

120

100

80

€0

40

20

o |

7

|
|
|
|

l

[e) R
—~——

-0-5 -0-25
X/a

025

050 0-25 05

ys/b

Fic. 5. Distribution of dimensionless secondary velocity

components (4, v) in two directions (X and Y) passing through

the center of circulation for a curved square channel y = 1
with X as a parameter.
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and these are shown in Fig. 5. One sees clearly
the movement of the center of circulation along
the broken lines with the increase of the Dean
number in this figure. It is seen that the intensity
of the secondary flow increases as the value of
the Dean number increases.

The location of the maximum velocity point
for a curved square channel is also of interest.
At K = 70, the maximum velocity is located at
around X/a = 028 and seems to remain there
with further increase of the Dean number. One
may add that the location of the maximum value
of the temperature profile shows exactly the
same trend with Pr = 0-73.

The distributions of velocity and temperature
in Figs. 2 and 3 suggest that boundary layer
approximation is possible for both velocity
and temperature fields when the Dean number is
high (see Fig. 5). This observation is important
since it confirms the applicability of the boundary
layer approximation for the high Dean number
region [14].

One can gain some insight into the flow
pattern in a curved rectangular channel by
considering the distribution of centrifugal forces
and pressure in a cross-section. For a given
radius of curvature, the centrifugal force is
proportional to the square of the axial velocity
at a given point and acting in a direction per-
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pendicular to the main flow. The fluid in the
central core region is subjected to a much larger
centrifugal force than the region near the wall.
Due to the centrifugal force, the fluid in the
central core will be pushed toward the outer wall
and pressure gradient results throughout the
cross-section. For a given Y-coordinate, the
pressure is greatest at the outer wall and smallest
at the inner wall. For a given X-coordinate to
the right of the center of circulation, the pressure
is greatest at Y= 0 and decreases toward the
upper or lower wall. By looking at the secondary
flow streamlines, one can also see the distribu-
tions of pressure gradients through the cross-
section. For example, the strong secondary flow
toward the inner wall near the upper or lower
wall is caused by large pressure drop whereas
the outward flow in the core region is caused by
centrifugal forces.

4.3 The effect of aspect ratio on velocity and
temperature fields

In order to see the effect of aspect ratio on
flow and heat transfer characteristics, the aspect
ratios y = 2, 5, 0-5 and 0-2 are considered in
addition to a curved square channei y = 1. The
effect of the Dean number on velocity and tem-
perature fields in a curved rectangular channel

080
< o — )
> U
-0-0085
-0.008
-025p—
8:-0.002
_ L 1 1
05905 -025 0 025 05

X/a

FiG. 6. Secondary flow streamlines and dimensionless
isothermals for a curved rectangular channel y = 2 with
K = 588 and Pr = 0-73.
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Y/é

X/a

FiG. 7. Secondary flow streamlines and dimensionless iso-
thermals for a curved rectangular channel y =5 with
K = 881and Pr =073
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- i
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Fic. 8. Secondary flow streamlines and dimensioniess
isothermals for a curved rectangular channel y = 0-5 with
K = 1034 and Pr = 0-73,
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FiG. 9. Secondary flow streamlines and dimensionless
isothermals for a curved rectangular channel y = 0-2 with
K = 79-3 and Pr = 0-73.
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with various aspect ratios is generally similar to
that for a curved square channel.

Consider a curved rectangular channel with
long side horizontal first. Secondary flow stream-
lines and isothermals for y = 2, Pr = 0-73 and
K = 588 are shown in Fig. 6. The center of
circulation is fairly close to the outer wall and
the secondary motion is weak near the inner
wall. This effect is also reflected in the isother-
mals. For the case y = 5 and Pr = 0-73, the
secondary flow streamlines and isothermals for
K = 881 are shown in Fig. 7.

The effect of the aspect ratio when the long
side is vertical will be examined next. Secondary
flow streamlines and isothermals for the aspect
ratios y = 0'5 and 0-2 with Pr = 0-73 are pre-
sented in Figs. 8 and 9, respectively, for repre-
sentative Dean numbers. With the increase of
the Dean number, the center of the circulation
tends to move toward the upper or lower
horizontal wall. It is not difficult to see the
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general trend for the velocity and temperature
fields with further decrease of the aspect ratio,
namely as y — 0. However, one notes that as
y — 0, the problem leads to instability problem
discussed in [15].

4.4 The effect of Prandtl number on temperature

field

Observation of the momentum equations (8)
and (9) shows that Prandtl number has no effect
on the flow field. By comparing the axial
momentum equation (3) and the energy equation
(10), one notes the similarity between the two
equations. In fact if Pr = 1, the axial velocity
distribution is similar to the temperature distri-
bution for a given Dean number. The effect of
inertia terms in equation (9) increases with the
increase of the Dean number. Consequently, the
effect of Prandtl number on the convective
terms of the energy equation (10) is similar to
the effect of Dean number on inertia terms in the
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Fic. 10. Dimensionless temperature distribution in a curved square channel y = 1 with K as a parameter and Pr = 0L,
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FiG. 11. Dimensionless temperature distribution in a curved square channel y = 1 with K as a parameter and Pr = 102.
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FiG. 12. Dimensionless temperature distribution in a curved square channel y = 1 with K as a parameter and Pr = 103,
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momentum equation. Noting the effect of the
Dean number on the axial velocity distributions,
one can immediately see the effect of Prandtl
number on the temperature distributions. The
effect of Prandtl number can be seen from Figs.
10 and 12 where temperature distributions
through the central axes of a curved square
channel y = 1 with K as a parameter are shown
for Pr = 0-1, 102 and 103, respectively.

4.5 Flow resistance

The overall flow characteristics will be con-
sidered next. The ratio (f Re)/(f Re), between a
curved rectangular channel and a straight rec-
tangular channel is plotted against Dean number
in Fig. 13 for the aspect ratios y = 02,05, 1, 2
and 5. One sees that for a given axial pressure
gradient, the effect of Dean number is greatest
for the curved square channel up to K =~ 100.
It is of interest to note that the aspect ratios
y = 0-5 and 2 represent the same cross-sectional
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area. Similarly, the cross-sectional area is
identical for the aspect ratios y = 0-2 and 5.
Comparison of the curves for y = 2 and 0'5 in
Fig. 13 shows that the Dean number effect is
much stronger for a channel with larger aspect
ratio after reaching a certain value of K. Similar
remark applies to the cases y = 5 and 0-2. This
fact is of interest in design. When K is small, the
centrifugal force effect is smalil and the inertia
terms may be negligible as compared with the
viscous terms. Consequently, the way of placing
long side horizontal or vertical has negligible
effect on flow resistance. In contrast, for the high
Dean number region, the effects of the centri-
fugal force and inertia terms are significant. The
different effect of the aspect ratio with the same
cross-sectional area may be explained from the
distribution of the centrifugal forces for the
high Dean number regime.

The results for the various aspect ratios
presented in Fig. 13 show that for the high Dean

(f Re)
(r ﬂﬂ)o

FIG. 13. (f Re)/(f Re), vs. K with aspect ratio y as a para-
meter.
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number regime, the value of (fRe)/{(fRe),
changes linearly with Dean number K. Conse-
quently, one may write (fRe)/(fRe)y ~ K™
where m depends on aspect ratio. For example,

(fRO/f Re)y ~ 0:225K%3°
fory=1and 10 < K < 1:5 x 10°.

Comparison of the result from the present
analysis for curved square channel with the
results available in the literature is of consider-
able interest and is shown in Fig. 14. One can
see that the present study covers the Dean
number ranging from small to a reasonably high
region where no other work is available in the
literature. One numerical datum at a quite high
Dean number is also plotted in Fig. 14 for com-
parison and shows a very good agreement with
Ludwieg’s experimental data [6]. Mori and
Uchida’s analysis [14] using boundary layer
approximation for the high Dean number agrees
well with Ludwieg’s experimental data up to a
certain Dean number. Beyond that the experi-
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mental data by Ludwieg are suspected to be in
the turbulent region. The two curves given by
Mori and Uchida represent the first and second
approximations.

Observation of the result from the present
numerical analysis and the results from Ludwieg
[6] and Mori and Uchida [14] for curved square
channel shows clearly that a reasonable estimate
can be made for the flow resistance with the Dean
number ranging from 150 to 1000 where cur-
rently accurate analytical solution is not avail-
able.

4.6 Heat transfer

The overall heat transfer characteristics will
be examined next. The graphical results for the
Nusselt number ratio Nu/(Nu), versus Dean
number are shown in Fig. 15 for the aspect
ratios y = 0-2, 05, 1, 2 and 5 with Pr = 0-73. As
noted earlier, the effect of Prandtl number on
temperature field is considerable. This is also
reflected in heat transfer results shown in Fig. 16
where Nu/(Nu), is plotted against K for a curved

100 5
ao}— (D  Present work (M=32, N=16 with €, =1-0X107%)
s  Present work (#=64, #=32 with €,=0-5 X102
for momentum equations)
80l— (@ Mori and Uchida { boundary ~layer approximation)
o Ludwieg {experiment}
40—
%2
Tles 30—
P L3 30
s
20—
1o ’ *
o 102 10° 10*

L4

Fi1G. 14. Comparison of the results for friction factor from
this work with the theoretical and experimental results
available in literature {y = 1).
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24~

FiG. 15, (Nu)/(Nu), vs. K with aspect ratio y as a parameter
and Pr = 073,
2 41—
22l o
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200~ ~
2
QK
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Q(
2 b
)
10° 10 102
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FiG. 16. (Nu)/(Nu), vs. K with Prandtl number Pr as a parameter
in a curved square channel y = 1.
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square channel with Pr = 0,01,071,0-73, 1, 10,
102, 10® and 10* It is seen that an asymptotic
line exists for the heat transfer result too in the
high Dean number region for a given Prandtl
number. The following approximate expression
may be used for the high Dean number regime.

Nu/(Nu), = 0-182K* Prt
for1 < Pr < 10%y = 1 and Nu/(Nuj), < 1-5.

It is of interest to note that, for example, at
Nu/(Nu), = 1-6 the distance between two neigh-
boring curves decreases slightly as Pr increases
by the same factor.

The heat transfer result from the present
analysis is compared with the result from Mori
and Uchida [14] in Fig. 17 for a curved square
channel y = 1. Mori and Uchida [14] show the
first and second approximations for the ratio
of Nusselt numbers for Pr = 071 and 0. A
datum from numerical solution at K = 460 is
also shown in the figure for comparison. Con-
sidering the case Pr = 0-71, one sees that the
present result is very reasonable up to a fairly
high Dean number and suggests clearly that a
reasonable estimate can be made for the Dean

20
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number ranging from K = 150 to 1000 as shown
as a broken line in Fig. 17.

Mori and Uchida’s work [14] shows that an
asymptotic value exists for the ratio Nu/(Nu), as
Pr —» oo. However, the numerical result from
this study shows that an asymptotic line for
Pr = oo will not be reached at least up to the
range (Pr = 10%) studied in this work, Further-
more, in [ 22] it is stated that the Nusselt number
ratio approaches the asymptotic value with the
increasing Prandtl number for a similar problem
in curved pipes. Based on the result of this work,
it appears that an asymptotic value does not
exist at least up to Pr = 10*. On the other hand,
an asymptotic value does exist for Pr — 0.

Itisknown that as the Dean number increases,
the effect of the convective terms in the energy
equation (10} increases for a given Prandtl
number. As the Prandt]l nurhber increases, the
effect of the convective terms also increases for
a given Dean number. One can see that the
Nusselt number increases with the increase of
the Prandtl number even if the Dean number is
held constant. The effect of the Prandtl number
is equivalent to the effect of the Dean number.
For example, at Nu/(Nu), = 16, as the Prandtl
number increases from 10 to 103, the Dean

for energy equation)

oD@

approximation}

Nu
(Nu)g

—~—— Present work (#M=32, #=16 with €;21X107%)
& Present work (M=64, /=32 with €,=1-43 X10™° ot

Mori ond Uchida {boundary—layer

102 03 10*

Fi6. 17. Comparison of heat transfer results from this work with theoretical results availabie in literature for y=1
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number decreases from K ~ 20 to K ~ 2. The
numerical results based on two different methods
of obtaining flow and heat transfer results
discussed in Section 4.1 show that the two
methods are off by only 0-4 per cent at most for
all the cases considered. This confirms the
accuracy of the numerical solutions. From
equations (18) and (20), one sees that

<§)= 1and %
on jy

on
The numerical results check excellently with
the above relations confirming again the accur-
acy of the numerical solution. The complete
numerical results for flow and heat transfer as
well as velocity and temperature profiles for the
cases other than y = 1 are given in [2].

w

R

w

5. CONCLUDING REMARKS

1. Numerical solution by point successive-over
relaxation is obtained for laminar forced con-
vection in curved rectangular channels with
various aspect ratios for a range of Dean num-
bers shown in Figs. 13 and 15. The limitation of
the numerical method is encountered at a
reasonably high Dean number. The difficulty
seems to come from the non-linear terms in the
equations and the fact that viscous term and
conduction term can be neglected in the core
region at high Dean number. In spite of this
difficulty the numerical method has definite
advantage over the perturbation method [24].

2. By using @ = 1 for the relaxation factor in
the high Dean number region, the range of the
numerical solution in terms of the ratios
(fRe)/(f Re)o and Nu/(Nu), is further extended
beyond the range studied in [20]. For a curved
rectangular channel with y = 2 the numerical
solution is obtained up to the ratios
(fRe)/(fRe)g = 18 and Nuf(Nu), = 2:2, res-
pectively. One sees that the range of applica-
bility of the present numerical solution far
exceeds that of the perturbation method for
curved pipe [24]. The numerical method is
effective for the flow regime with Dean number
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ranging from small to a reasonably high value
and complements the boundary layer tech-
nique [14].

3. The effect of Prandtl number on heat transfer
result is significant. The effect of the Prandti
number is equivalent to that of Dean number.
It is pointed out in References [14, 22] that the
Nusselt number ratio Nu/(Nu), approaches the
asymptotic value as the Prandtl number ap-
proaches infinity. The result of this analysis
shows that the asymptotic line for Pr = oo will
not be reached at least up to Pr = 10* In [22]
the heat transfer results obtained from boundary
layer approximation for Pr = oo are shown to
agree with the experimental results obtained by
Seban and McLaughlin [23] for Pr ~ 400.
Based on the result of this analysis it is believed
that the asymptotic line for Pr = oo obtained
by boundary-layer approximation may lead to
some error in heat transfer prediction when
Pr > 400. On the other hand, as Pr — 0, the
heat transfer result approaches the asymptotic
value as shown in Figs. 16 and 17. One may note
that the boundary-layer approximation cannot
be used as Pr — 0.

4. Comparison of the results from this analysis
and the results available in the literature [6, 14]
for a curved square channel shows that a
reasonable estimate can be made for the flow
and heat transfer results for the Dean number
ranging from 150 to 1000 where currently
accurate solutions are not available.

5. The result of this analysis confirms the
known fact that the local heat transfer coefficient
is higher at the outer wall of the curved channel
than at the inner wall.

6. It may be worthwhile to point out that the
assumption 1 in the formulation of the problem
was introduced to limit the scope of the present
investigation. The order of magnitude analysis
for the fundamental equations for the curved
channel flow [ 2] shows that anotherindependent
dimensipnless parameter (D./R,) representing
the curvature effect is required for the case when
the radius of curvature of the channel is not
large as compared with D,. The inclusion of the
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curvature parameter D,/R, in the analysis leads
to more terms such as Coriolis force term in the
governing equations. One may add that under
certain conditions the buoyancy force effect on
forced convection heat transfer in curved chan-
nels cannot be neglected [2].

7. The convergence of the numerical solution is
ascertained by comparing the numerical results
using two methods of evaluating f Re and Nu.
Comparison of the numerical results with the
known exact values for the limiting case of
straight channel (K = 0) shows excellent agree-
ment also. Some details on the quantitative
evaluation of the degree of convergence are
given in [2]. The important question of whether
the numerical computations converge to the
physical solution can be answered only partially
by the rather good agreement of one numerical
datum with Ludwieg’s experimental data as
shown in Fig. 14. Similar comparison for the
heat transfer results is not possible at present
due to the lack of experimental data. However,
it is known that Nusselt number results should
show the same trend as the friction factor results.
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CONVECTION FORCEE LAMINAIRE DANS DES CONDUITES
RECTANGULAIRES COURBES

Résumé—1Le but de cet article est de présenter des résultats d’écoulement et de transport de chaleur
obtenus par une méthode de surrelaxation ponctuelle successive pour un écoulement laminaire permanent
enti¢rement établi dans des conduites rectangulaires courbes sous les conditions aux limites thermiques d’un
flux de chaleur pariétal uniforme axialement et d’une température pariétale uniforme périphériquement
a n’importe quelle position axiale. La méthode numérique fournit des solutions jusqu’a un nombre de
Dean raisonnablement élevé pour les allongements = 0,2, 0,5, 1, 2 et 5 considérés dans cette étude. On a
remarqué que la méthode des perturbations est appliquable seulement pour la région des nombres de Dean
relativement bas et que la technique de la couche limite est valable seulement pour le régime des nombres
de Dean élevés.

Les résultats respectivement pour f Re/(f Re), et Nuf(Nu), sont présentés graphiquement en fonction
du nombre de Dean pour Pr =9,73. On montre également des exemples typiques pour les profils de
vitesse axiale et de température, les lignes de courant et les profils de vitesse pour I'écoulement secondaire
et les isothermes.

Pour la conduite de section carrée, I'effet du nombre de Prandtl sur le résultat du transport de chaleur
est aussi étudié. La comparaison du résultat & partir de cette analyse et le résultat, pour le régime des
nombres de Dean élevés dans la conduite carrée courbe, disponible dans la littérature, montre clairment
qu’une estimation raisonnable peut &tre faite pour les résultats d’écoulement et de transport de chaleur
pour le nombre de Dean allant de 1504 1000 ob des solutions généralement précises ne sont pas disponibles.

LAMINARE, ERZWUNGENE KONVEKTION IN GEKRUMMTEN RECHTECKKANALEN

Zusammenfassung—In vorliegender Arbeit werden Ergebnisse fiir die Stromung und den Wirmeiibergang
gebracht, die nach einer punktweisen Uberrelaxationsmethode fiir stationdre voll ausgebildete Laminar-
strémung in gekriimmten Rechteckkanilen bei achsial einheitlichem Wérmestrom durch die Wand und
bei peripher einheitlicher Wandtemperatur in beliebiger achsialer Lage erhalten wurden. Die numerische
Methode liefert Losungen bis zu einer ziemlich hohen Dean-Zah! fiir Anordnungsverhiltnisse von = 0-2,
0-5, 1, 2, und 5 wie sie hier zugrundegelegt sind. Es sei bemerkt, dass die Perturbationsmethode nur fiir
relativ niedrige Dean-Zahibereiche anwendbar ist und die Grenzschichttechnik nur fiir hohe Dean-Zahlen
gilltig ist. Fiir Pr = 0-73 ist fARe)/f (Re), bzw. Nu/Nu, in Abhingigkeit von der Dean-Zahl grafisch
wiedergegeben. Typische Beispicle fiir Achsialgeschwindigkeit und Temperaturprofile, Stromlinien und
Geschwindigkeitsprofile fiir Sekundéirstromung und Isothermen werden ebenfalls gezeigt. Fir Recht-
eckkanile wird auch der Einfluss der Prandtl-Zahl auf den Warmeiibergang untersucht. Ein Vergleich
aus dem Ergebnis dieser Analyse und dem Ergebnis fiir einen hohen Dean-Zahlbereich zeigt deutlich,
dass verniinftige Abschitzungen fiir die Strémung und den Wirmeiibergang fiir Dean-Zahlen von 150
bis 1000 gemacht werden konnen, wo gegenwirtig keine genauen Losungen verfiigbar sind.

JAMUHAPHAA BLIHVHJIEHHAA ROHBERIWA B UCRPUBJIEHHbLIX
NMPAMOVIOIBHLI X KAHAJAX

AHHOTRIMA—B Januol cTaThe NPeICTABIEHB PE3YILTATHL N0 HCCIENOBAHUIO TEILTOODMEHA
PeTAKCAMOHHEIM METO;{OM B PA3BUTOM JAMMHAPHOM NOTOKE B HCKPUBIEHHELX IPFMOYIOIbHALX
KAHAMAX TIPU ABYX THNAX TPAHUYHBLIX YCJIOBUW: @) PABHOMEDHO PAcHpeeNeHHbIl Ha cTeRKe
0CeBOH TEMIOBOI TIOTOK ; 6) OIMHAKOBASA 1O MEPUMETPY B I0G0M 0CEBOM CEYEHMHU TEMIEpATypa
crenkn. UMCIeHHBIM METO;0M TOJVUEHBI PElUleHuA A Goabumx ducen [Juua 11pu COOTHO-
mienusx cropou, pasueix 0,25 0,5; 1,2 u 5. OTMevaeTcd, YTO METO, BO3MYIIeHU npuMenuy
TONABLKO IS OTHOCUTENbHO MAaJbix ducesn [[uHa, TOTaa wak npUGIMMKEHHE NOTPAHUTHOTO
CIIOA CTPABERANBO TOIBKO A7 GONHIIUX 3HAYCHUH 1uciIa Huua. ‘
Mpueonarca sasucumoctu fRe/(fRe)o u Nuf(Nu)o or uueaa [uwa mpu Pr o= 4,73,
TlpuBesieHb! XAPAKTEPHEI® pAcHpejeseHns TeMnepaTypbl i CKODOCTH 110 OCH, H30TEpMLL,
npodIH CKOPOCTH W THHUM TOKA NPH BTOPUUHOM TEHEHUH. Hposme Toro, B rauare Kpajipa-
THOTO CeYeHMA HCCAeI0BAJNOCH BAKAHMe na TerooGmen 4ucia ITpangras. Wa cpasuenus
[IOJYYEHHBIX PelyIbTATOR M UMEIOUINXCA JafHbiX BLTERAET, UTO B KPUBOAMHGHHOM KaHAILE
KBAJPATHOrO CeUeHNH MOMIO PACCUATATH TIIPOAMHAMMKY U Terj000MeH B JHANABO0He
usMenenus yncen Juna or 150 5o 1000, 171a ROTOPOro ele HeT TOYHOrO PeIeHnd.



