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Abstract-The purpose of this paper is to present flow and heat transfer results obtained by a point succes- 
sive over-relaxation method for steady fully developed laminar flow in curved rectangular channels under 
the thermal boundary conditions of axially uniform wall heat flux and peripherally uniform wall tempera- 
ture at any axial position. The numerical method yields solutions up to a reasonably high Dean number for 
the aspect ratios y = 0.2,0.5, 1, 2 and 5 considered in this study. It is noted that perturbation method is 
applicable only for relatively low Dean number region and boundary-layer technique is valid only for high 
Dean number regime. 

Graphical results for f Re/(f Re), and Nu/(Nu),, respectively, vs. Dean number are presented for 
Pr = @73. Typical examples for axial velocity and temperature profiles, streamlines and velocity profiles 
for secondary flow and isotherms are also shown. For square channel, the effect of Prandtl number on heat 
transfer result is also investigated. Comparison of the result from this analysis and the result for high Dean 
number regime for the curved square channel available in the literature shows clearly that reasonable 
estimate can be made for the flow and heat transfer results for the Dean number ranging from 150 to 1000 

where currently accurate solutions are not available. 
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NOMENCLATURE 

width of a curved rectangular chan- 
nel ; 
height of a curve rectangular chan- 
nel ; 
constant, C,D,3/4vp; 
axial pressure gradient, - @,/aZ; 
axial temperature gradient, aT/Z; 
equivalent hydraulic diameter, 
2ab/(a + b) ; 
function defined in equation (12); 
function defined in equation (15) ; 
friction factor, 2?,/(pZ2) or a 
dummy variable : 
dimensionless grid spacing, 
a/MD, = b/2 ND,; 
average heat transfer coefficient ; 
Dean number, Re(D,/R,)*, see 
equation (21); 
thermal conductivity ; 
number of divisions in X-direction ; 
number of divisions in Y-direction ; 

Nu, 
n, 

p, 
POP 

P’, 

pr, 
R.2 

Re, 
I CT 

T 
T 
u:‘v tt: 

u, 0, w, 

Nusselt number, hD,/k ; 
dimensionless inward-drawn nor- 
mal or nth iteration for superscript ; 
pressure ; 
axial pressure distribution meas- 
ured along the centerline and a 
function of 2 only; 
pressure deviation which is a func- 
tion of X and Y only ; 
Prandtl number, v/a; 
radius of curvature of a curved 
rectangular channel ; 
Reynolds number, D,V/v; 
dimensionless radius of curvature 
of a curved rectangular channel, 

KID, ; 
local temperature ; 
wall temperature ; 
velocity components in X, Y and 
Z directions ; 
dimensionless velocity components 
in x, y and z directions ; 
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X, Y, 2, Cartesian coordinates ; 

x, Y? dimensionless Cartesian coordin- 
ates 

Greek letters 
thermal diffusivity ; 
aspect ratio of rectangular channel, 

0 ; 
a prescribed error ; 
dimensionless temperature differ- 
ence ; 
viscosity ; 
kinematic viscosity ; 
vorticity, W/&X - au/aY; 
density ; 
mean shearing stress at wall ; 
dimensionless stream function ; 
relaxation factor ; 
dimensional or dimensionless Lap- 
lacian operator. 

space subscripts of grid point in 
X and Y directions ; 
value for straight channel ; 
value at wall. 

Superscripts 

n, nth iteration ; 

-> average value. 

1. INTRODUCTION 

THE EFFECTS of body forces such as buoyancy, 
centrifugal, Coriolis and magnetic forces on flow 
and heat transfer characteristics in pipes or 
channels of various cross sectional shapes have 
been the subjects of many investigations in 
recent years. The forced convection problems 
with body force effect are frequently encountered 
in various heat exchangers, cooling or heating 
systems, reactors and heat engines. A number 
of combinations concerning the kind of body 
forces and the geometrical shape of the flow 
passages are possible in practical forced convec- 
tive heat transfer problems. Trefethen [1] 

pointed out that secondary flow patterns in 
rotating radial tubes, heated horizontal tubes 
and curved tubes are qualitatively similar since 
the double helix secondary flows are caused by 
unbalanced body forces within the fluid. 

Under certain conditions, a secondary flow 
due to body forces will not be established until a 
critical value of the characteristic parameter 
based on body force and the flow field is reached. 
The stability problem relating to the onset of 
the secondary flow has also attracted much 
attention in the past. For a flow in the curved 
rectangular channel, the critical value of the 
characteristic parameter (Dean number) is zero. 
The literature on flow and heat transfer in curved 
pipes is very extensive because of its technical 
importance. A literature survey and review of 
the pertinent works in this connection is given 
in [2]. In contrast to the number of published 
papers dealing with flow and heat transfer in 
curved pipes, the published works relating to 
flow and heat transfer in curved rectangular or 
other noncircular channels are rather limited in 
spite of its significance in practical applications. 

The purpose of this work is to present an 
accurate numerical solution on forced convective 
heat transfer for steady fully developed laminar 
flow in curved rectangular channels with various 
aspect ratios under the thermal boundary 
conditions of axially uniform wall heat flux and 
peripherally uniform wall temperature at any 
axial position. Both Ito [3] and Cuming [4] 
presented theoretical analysis for flow in curved 
pipes of elliptic and rectangular sections using 
perturbation method. Dean and Hurst [S] 
obtained some analytical results for laminar 
flow in curved square channel by assuming 
uniform stream for secondary flow. Using 
boundary layer approximation along the wall, 
Ludwieg [6] presented analytical results for 
friction factors for fully developed laminar flow 
in helically coiled square channels rotating 
around its axis. Extensive experimental data 
covering both laminar and turbulent flows are 
compared against the theoretical results for 
laminar flow only with good agreement. Ex- 
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perimental results for friction factors are also 
presented for the case of stationary curved 
square channel with laminar and turbulent 
flows. Eichenberger [7] analysed entrance region 
problem in a curved rectangular channel with 
secondary flow by assuming an inviscid flow. 
Kapur et al [8] and Topakoglu [9] considered 
fully developed laminar flow in curved annuli. 
Experimental investigations on fully developed 
turbulent flows in a plane curved channel 
between concentric circular walls were reported 
by Wattendorf [lo] and Eskinazi and Yeh [11] 
and turbulent heat transfer by Kreith [12]. 
Ustimenko et al. [13 j presented flow and heat 
transfer results for fully developed laminar flow 
in curved flat channels with different ratios of 
heat fluxes at the inner and outer walls neglect- 
ing secondary flow effect. 

Using boundary layer approximation, Mori 
and Uchida [ 141 presented analytical results for 
fully developed laminar flow in a curved square 
channel under the thermal boundary condition 
of axially uniform wall temperature gradient. 
Their results for flow and heat transfer are 
applicable only for the regime where Dean 
number is large. Velocity and temperature fields 
were obtained by dividing the cross section into 
core and boundary regions and considering the 
balances of kinetic energy and entropy produc- 
tion for the boundary layers. Mori and Uchida 
[15] also carried out theoretical investigation 
on forced convective heat transfer for fully 
developed laminar and turbulent flows in a 
curved channel under the condition of constant 
wall heat flux and compared the results with 
experimental measurements. 

It is quite clear from the above brief review 
that more theoretical and experimental works 
are certainly required to bring our knowledge 
of flow and heat transfer in curved channels 
comparable to the level provided by the rather 
extensive data relating to flow and heat transfer 
in straight channels. It will be shown that the 
numerical method complements the boundary 
layer technique for high Dean number regime 
and yields accurate solution up to a reasonably 

high Dean number region for the aspect ratios 
y = 0*2,0*5, 1, 2 and 5 considered in this study. 

2. FORMULATION OF THE PROBLEM 

Consider a steady hydrodynamically and 
thermally fully developed laminar flow of 
viscous fluid in a curved rectangular channel 
under the thermal boundary conditions of 
axially uniform wall heat flux and peripherally 
uniform wall temperature at any axial position. 
The following assumptions are made in the 
analysis. 

1. The radius of curvature of the rectangular 
channel is large compared with the hydraulic 
diameter of the cross-section of the channel. 

2. Physical properties are constant. 
3. Viscous dissipation is negligible. 
Taking the origin of the rectangular coordin- 

ates (X, I: Z) at the center of the rectangular 
cross-section as shown in Fig. 1 and applying 

FIG. 1. Coordinate system and numerical grid for a curved 
rectangular channel. 

the assumptions stated above, the governing 
equations for the present problem are; 
Continuity Equation : 
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Momentum Equation for Secondary Flow : 

where 

Axial Momentum Equation : 

Energy Equation : 

The pressure at any point consists of two parts as 

P = P,(z) + p’(X, Y). (5) 

Boundary Conditions : 

U=V=W=T-T,=Oatwall 

V = & = g = 0 along centerline Y = 0. 
(6) 

Introducing the following transformations, 

X = Dex, Y = D,y, R, = Dere, U = (v/D& 

W = (vC/D,)w, T - T, = (C,D,PrC)B, 

aP,#Z = - C,,aT@Z = C2,C,D;/4vp = C 

where D, = 2ab/(a + 1;) 

and a dimensionless stream function $, 

u = a$jay, v = - aejax, (7) 

the governing equations may be restated in the 
following dimensionless forms. 
Momentum Equation for Secondary Flow : 

Axial Momentum Equation : 

a+ aw a+ a~ -----= 
ay ax ax ay 

VW + 4, (9) 

Energy Equations : 

a*ae a+ae 
Pr ----- ( ayax ax ay 1 ~V~8-w. WV 

Because of symmetry with respect to the 
X-axis, it is only required to consider the lower 
half of the rectangular cross-section (see Fig. 1). 
Consequently, the boundary conditions are : 

a* a* -=-=w=6=Oatchannel wall 
ax ay 

a+ aZ+ aw ae o (11) 
_.--_=-_=-= 

dx- ay2 ay ay 
along centerline y = 0. 

The above set of equations constitutes a 
formal mathematical statement of the problem 
under consideration. In contrast to the forced 
convection problem with buoyancy effect, one 
notes that for the problem at hand, the momen- 
tum equations and the energy equation are 
uncoupled. It is possible to solve the above set 
of equations analytically by perturbation method 
as demonstrated in the literature for similar 
problems [3,4], but the process is very tedious 
and the solution quickly diverges with the 
increase of the Dean number. In view of the 
considerable difficulties with the analytical 
method, the numerical solution using convergent 
iterative procedure will be presented in this 
study. 

3. NUMERICAL SOLUTION 

3.1 Finite-difference approximation 
In recent years, finite-difference methods have 

been shown to be a powerful tool for the solution 
of natural convection problems [16-191. 
Recently, Cheng and Hwang [20] presented 
numerical solution for fully developed com- 
bined free and forced laminar convection in 
horizontal rectangular channels using point 
successive-overrelaxation method. In this study, 
the point successive-overrelaxation method was 
further extended to solve a set of elliptic partial 
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differential equations and the associated boun- 
dary conditions. One notes that the axial 
momentum equation (9) may be regarded as 

Using t~-~ojnt central difference formula and 
square mesh, the smite-di~eren~ equation for 
equation (9) can be expressed as 

1 
Wid = - 

4 l,j + wi- l,j + wi,j+ 1 

h2 
+ wij-1 1 i _ _ 

4 
ui,jw++l,j ~wi-l~ 

wij-l-l 
i” Vf,j ’ 

- W&j- 1 

2h 
(13) 

similarly, the unite-diffe~~~e equation for the 
energy eq~tion (10) becomes 

To obtain the ~~te~i~ere~~e equation for 
equation fg), one notes &at this equation may 
be regarded as the inhomogeneous biharmonic 
equation in the following form. 

Omitting the details, the finite-difference equa- 
tion for the secondary flow s&earn function 9 at 
the mesh point @, j) may be obtained by double 
application of the procedure tr~sfo~~g har- 
monic eqquation (12) into its ~rn~te~~ere~~ 
form. The result is 

- ~vi,j)~j,j-2 + (- & + f ut,j 

+ $Dij)$i+l.j+l + (- 4 + $%,j 

- $Vi,j),itl.j-l + (- k - $%,j 

h 
- zvi,j 

> 
$’ r-l,j-I - ~(~)wj,j 

e 

x t-- w&j+2 $- hJ* I - 8wi,j- 1 

+ wi,j-2)* WI 

It is noted that for the derivative ~/a~ in 
equation (15), five-point difference formula is 
used. It suffices to note that five-point difference 
formula is used in computing secondary flow 
velocity components u, B from equation (7). For 
simplicity, the kite-~~eren~e exp~sions for 
the bonds conditions will be omitted except 
those along the horizontal center line i = 1,2,. I 1 
M + 1,j = N -k 1. These are 

WiJ = wi2y+z9 i+v = 0 &x-c27 iEli,v = - \f/i&Q 
ti* &x-l = - $fV+3 +&X*1 = VitiVfl = O. 

Et is well to note that the ~rnite-d~~e~~~e expres- 
sion for the stream factor at the mesh point 
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next to the boundary takes special form after 
satisfying the boundary condition for +. 

3.2 Iterative method and point successive-over- 
relaxation method 

Point successive-overrelaxation method [Zl] 
is used in solving each differential equation. The 
iterative procedure employed is similar ro that 
used in [19, 203. The detail of the procedure is 
given in [2]. The following test is used at the end 
of each iteration to determine the convergence 
of the computed function. 

Max ( fiyj - f (:y I) 1 /max 1 fi:,’ 1 < E (I 7) 

wherefis a dummy variable and E is a prescribed 
error. Numerical experiment shows that the 
following prescribed errors are satisfactory. 

El = lo--’ for Wi,j, *i,i and 8,j 

E2 = 5 x 1o-5 for Ui,j and vi,j 

The effects of grid size on computing time, and 
on flow and heat transfer results are studied in 
[2]. The round-off error is found to be negligible 
by using double precision in computation. 

With the aspect ratio of the channel and 
Prandtl number given, numerical solution starts 
with Dean number K = 0 and proceeds gradu- 
ally toward high Dean number regime. By 
increasing the Dean number and maintaining 
the same prescribed errors, the numerical solu- 
tion is found to be convergent up to a reasonably 
high Dean number; but starting at a certain 
Dean number the secondary flow pattern 
changes from the regular two vortices to four 
vortices. The additional two weaker and smaller 
vortices are located near the central part of the 
outer wall. Numerical experiment also discloses 
the existence of a pair of solutions (2 vortices and 
4 vortices) for a given Dean number in high Dean 
number regime. The conditions under which the 
double-solutions were encountered, and the 
details ofthenumerical experiment for secondary 
flow pattern with four vortices are described in 
[2]. Because of the uncertainties associated with 
the double-solutions, the flow and heat transfer 

results for the Dean number range with this 
peculiar behavior will not be presented. 

When the magnitude of the secondary velocity 
components exceeds 2/h, numerical results start 
oscillation for a solution with regular two 
vortices and linally the solution diverges. The 
above situation occurs at a certain high Dean 
number. One notes that the coefficient matrix is 
diagonally dominant when lui j/ or 1 vi j 1 < 2jh. 
On the other hand, the numerical solution with 
four vortices is still convergent even when the 
Dean number far exceeds the value indicated 
above for the flow pattern with two vortices, 
Eventually, the numerical solution with four 
vortices also diverges when the magnitude of the 
secondary velocity components (u, v) exceeds 2/h. 

An example of computing time required may 
be of interest. It takes about 138 min by IBM 
360/67 to obtain a complete result up to 
C’/r, = 0.17 x lo6 for flow and heat transfer 
with y = 1, M = 32, N = 16, and Pr = 0.71. 

To improve convergence in the process of 
iterations, a relaxation factor 0) is used. The 
value of the factor o usually lies between 1 and 2. 
A question naturally arises as to the optimum 
value of the factor o_, that will yield a maximum 
rate of convergence. Unfortunately, no general 
method is available for the evaluation of the 
optimum relaxation factor for the elliptic-type 
partial differential equations with non-linear 
terms as encountered in the present problem. 
However, for the low Dean number region, one 
would expect that the method described in [21] 
may be applicable. In this study, the optimum 
relaxation factor o,,, for linear system is used 

when the Dean number is zero or sufficiently 
small. By using oop = 1.75 - 1.82, considerable 
computing time is saved. For the Dean number 
ranging from small to intermediate values, 
different relaxation factors for equations (13), 
(14) and (16) are used after considerable numeri- 
cal experiments. Some examples of relaxation 
factors used are given in [Z]. One notes that in 
high Dean number region the relaxation factor 
o = 1 is found by trial and error to be the best 
value. Further details can be found in [2]. 
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4. FLOW AND HEAT TRANSFER RESULTS 

4.1 Plow and heat tru~sfer c~r~r~isties 
It is possible to obtain the expressions for the 

product of friction factor and Reynolds number, 
fRe, and the Nusselt number, Nu, by consider- 
ingeither the velocity and temperature gradients, 
respectively, along the channel wall or the overall 
force and energy balances, respectively for the 
axial length dZ. The results for resistance co- 
effrcien t are 

_ /%A 

The Nusselt number is defined by 

e Nu=F 
where 7i can be obtained in two 

(19) 

ways. Using 

The single or double integrations required for 
the evaluation of the mean values are carried out 
by using Simpson’s rule. For the evaluation of 
the derivatives such as (%/&), and (8/&z),, 
five-point formula is found to be satisfactory. 
The foregoing two rne~~s of evaluating (fRe) 
and Nu afford checking the accuracy of the 
numerical results. One notes that the Dean 
number can also be written as 

c2 *_ 
K=T w. 

0 
(21) 

c 

mixed mean temperature difference, the results 
are 

1.2 The ef;feect of Ilean bier on velocity and 
te~pera~re JieMs 

In order to see the effect of Dean number on 
velocity and temperature fields, the dimension- 
less axial velocity and temperature profiles along 
the central horizontal axis Y = 0 and the vertical 

I I I 
1 

-0.25 0 025 0 

X/O 

FIG, 2. Dimensionless axial velocity distribution in a curved square channel y = 1 with K as a parameter. 
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-0 25 0 0 25 05 0 0.25 

X/a Y/b 

Frc,. 3. Dimensionless temperature distribution in a curved square channel 1; = 1 and Pr = 0.73 with K as a parameter. 

axis X = 0 are plotted for a curved square 
channel y = 1 with Pr = 0.73 for several repre- 
sentative Dean numbers in Figs. 2 and 3, respec- 
tively. Q~lti~tively, the effect of centrifugal 
force on the flow and temperature fields are 
similar to the effect of buoyancy force for a given 
geometrical shape of channel and thermal 
boundary conditions at the wall. One can see 
clearly that the effect of the ~nt~fugal force is 
to shift the location of the maximum value 
toward the outer wall and decrease the maximum 
value itself as the value of the Dean number 
increases. It is expected that the profiles for the 
velocity and temperature are similar. 

Secondary flow streamlines and isothermals 
for a curved square channel are shown in Fig. 4 
for K = 51.9 and Pr = @73. The location of the 
center of ~irc~ation is of interest since one can 
gain the general idea about the secondary flow 
pattern and the intensity of secondary flow. For 
a curved square channel, the X-coordinate of 

, / - 
-0 5 -0 25 :I 0 25 c 

x/a 

Fit;, 4. Secondary flow streamlines and dimensioniess 
isothermals for a curved square channel y = 1 with K = 51.9 

and Pr = 0.73. 
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the center of circulation gradually moves from hand, with the increase of the Dean number, the 
X/u = 0 toward the outer wall as the Dean Y-coordinate at the center of circulation always 
number increases and reaches about X/u = O-1 moves toward the upper or lower wall indicating 
at K = 45. With further increase of the Dean increase of the intensity of secondary flow near 
number, the center of circulation tends to move the upper or lower wall. 
back toward the center X/u = 0. It is found that The distributions of the secondary flow 
with Dean number at about 125 the center of velocity components with the increase of the 
circulation returns to X/u = 0. On the other Dean number are also of considerable interest 

140 

120 

100 

t 

60 

I I 
I 
I 

.0.5 -0.25 0 0.25 C 

X/O 

--I 

0 0.25 0.5 

Y/b 

le 1 IO 

FIG. 5. Distribution of dimensionless secondary velocity 
components (u, u) in two directions (X and Y) passing through 
the center of circulation for a curved square channel y = 1 

with K as a parameter. 
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and these are shown in Fig. 5. One sees clearly 
the movement of the center of circulation along 
the broken lines with the increase of the Dean 
number in this figure. It is seen that the intensity 
of the secondary flow increases as the value of 
the Dean number increases. 

The location of the maximum velocity point 
for a curved square channel is also of interest. 
At K = 70, the maximum velocity is located at 
around X/a = 0.28 and seems to remain there 
with further increase of the Dean number. One 
may add that the location of the maximum value 
of the temperature profile shows exactly the 
same trend with Pr = 0.73. 

The distributions of velocity and temperature 
in Figs. 2 and 3 suggest that boundary layer 
approximation is possible for both velocity 
and temperature fields when the Dean number is 
high (see Fig. 5). This observation is important 
since it confirms the applicability of the boundary 
layer approximation for the high Dean number 
region [ 141. 

One can gain some insight into the flow 
pattern in a curved rectangular channel by 
considering the distribution of centrifugal forces 
and pressure in a cross-section. For a given 
radius of curvature, the centrifugal force is 
proportional to the square of the axial velocity 
at a given point and acting in a direction per- 

@ 5c 

0 25 

Q 

? 
C 

-0 2e 

-0 5c 

pendicular to the main flow. The fluid in the 
central core region is subjected to a much larger 
centrifugal force than the region near the wall. 
Due to the centrifugal force, the fluid in the 
central core will be pushed toward the outer wall 
and pressure gradient results throughout the 
cross-section. For a given Y-coordinate, the 
pressure is greatest at the outer wall and smallest 
at the inner wall. For a given X-coordinate to 
the right of the center of circulation, the pressure 
is greatest at Y = 0 and decreases toward the 
upper or lower wall. By looking at the secondary 
flow streamlines, one can also see the distribu- 
tions of pressure gradients through the cross- 
section. For example, the strong secondary flow 
toward the inner wall near the upper or lower 
wall is caused by large pressure drop whereas 
the outward flow in the core region is caused by 
centrifugal forces. 

4.3 The effect of aspect ratio on velocity and 
temperature fields 

In order to see the effect of aspect ratio on 
flow and heat transfer characteristics, the aspect 
ratios y = 2, 5, 0.5 and 0.2 are considered in 
addition to a curved square channel y = 1. The 
effect of the Dean number on velocity and tem- 
perature fields in a curved rectangular channel 

-0,006 - 

8=-o OCG..~ 

I 
5 -0 25 0 0 25 05 

FIG. 6. Secondary flow streamlines and dimensionless 
isothermals for a curved rectangular channel y = 2 with 

K = 58.8 and Pr = 0.73. 
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0,5( 

O-2 

S' 

-02i 

FIG. 7. Secondary flow stre.amhes and dixnensioikss iso- 
thermals for a curved rectangular channel y = 5 with 

K=881andpt=@73. 

J 

0.2: 

Q 

2 ( 

-0.2: 

-o?x 

X/U 

FIG. 8. Scom&ty flow streamkes and dimensionless Fk. 9. Secomfary flow streamkes and dimemionlcss 
isothermah for a curved rectangular channel y = 0.5 with 

K = 103.4 and Pr = 0.73. 
isothermal8 for a curved rectangular channel y = Cb2 with 

K = 79.3 and Pr = 0.73. 

c 
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with various aspect ratios is generally similar to 
that for a curved square channel. 

Consider a curved rectangular channel with 
long side horizontal first. Secondary flow stream- 
lines and isothermals for y = 2, Pr = 0.73 and 
K = 58.8 are shown in Fig. 6. The center of 
circulation is fairly close to the outer wall and 
the secondary motion is weak near the inner 
wall. This effect is also reflected in the isother- 
mals. For the case y = 5 and Pr = 0.73, the 
secondary flow streamlines and isothermals for 
K = 88.1 are shown in Fig. 7. 

The effect of the aspect ratio when the long 
side is vertical will be examined next. Secondary 
flow streamlines and isothermals for the aspect 
ratios y = 0.5 and 0.2 with Pr = O-73 are pre- 
sented in Figs. 8 and 9, respectively, for repre- 
sentative Dean numbers. With the increase of 
the Dean number, the center of the circulation 
tends to move toward the upper or lower 
horizontal wall. It is not difficult to see the 

general trend for the velocity and temperature 
fields with further decrease of the aspect ratio, 
namely as y -+ 0. However, one notes that as 
y --, 0, the problem leads to instability problem 
discussed in [ 151. 

4.4 The effect of Prandtl number on temperature 
field 

Observation of the momentum equations (8) 
and (9) shows that Prandtl number has no effect 
on the flow field. By comparing the axial 
momentum equation (9) and the energy equation 
(lo), one notes the similarity between the two 
equations. In fact if Pr = 1, the axial velocity 
distribution is similar to the temperature distri- 
bution for a given Dean number. The effect of 
inertia terms in equation (9) increases with the 
increase of the Dean number. Consequently, the 
effect of Prandtl number on the convective 
terms of the energy equation (10) is similar to 
the effect of Dean number on inertia terms in the 

I.6 

l-2 

-1.0 

N 

0 
x -0.0 

8 

-0.6 

-1.6 

-0.6 

I 
0 0 25 C 

x/o 

FIG. 10. Dimensionless temperature distribution in a curved square channel y = 1 with K as a parameter and Pr = 0.1 
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P, -0.E 

-0 E 

-0 4 

-0 2 

c 
5 -0.25 0 0.25 5 

X/O 
FIG. 11. Dimensionless temperature distribution in a curved square channel y = 1 with K as a parameter and Pr = lo2 

I 
0 025 ( 

Y/b 

LAMINAR FORCED CONVECTION HEAT TRANSFER 483 

-I 6 

-I 4 

-0.6 

-0.4 

-0.2 

0 -8 
I I I I 

i -0.25 0 0.25 0 

-0-6 - 

-0.4 - 

-0.2 - 

I 
0 0.25 C 

x/o Y/b 
FIG. 12 Dimensionless temperature distribution in a curved square channel y = 1 with K as a parameter and Pr = lo3 
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momentum equation. Noting the effect of the 
Dean number on the axial velocity distributions, 
one can immediately see the effect of Prandtl 
number on the temperature distributions. The 
effect of Prandtl number can be seen from Figs. 
10 and 12 where temperature distributions 
through the central axes of a curved square 
channel y = 1 with K as a parameter are shown 
for Pr = 0.1, lo2 and 103, respectively. 

4.5 Flow resistance 
The overall flow characteristics will be con- 

sidered next. The ratio (fRe)/(fRe), between a 
curved rectangular channel and a straight rec- 
tangular channel is plotted against Dean number 
in Fig 13 for the aspect ratios y = 0*2,05, 1, 2 
and 5. One sees that for a given axial pressure 
gradient, the effect of Dean number is greatest 
for the curved square channel up to K z 100. 
It is of interest to note that the aspect ratios 
y = O-5 and 2 represent the same cross-sectional 

area. Similarly, the cross-sectional area is 
identical for the aspect ratios y = 0.2 and 5. 
Comparison of the curves for y = 2 and 0.5 in 
Fig. 13 shows that the Dean number effect is 
much stronger for a channel with larger aspect 
ratio after reaching a certain value of K. Similar 
remark applies to the cases y = 5 and 0.2. This 
fact is of interest in design. When K is small, the 
centrifugal force effect is small and the inertia 
terms may be negligible as compared with the 
viscous terms. Consequently, the way of placing 
long side horizontal or vertical has negligible 
effect on flow resistance. In contrast, for the high 
Dean number region, the effects of the centri- 
fugal force and inertia terms are significant The 
different effect of the aspect ratio with the same 
cross-sectional area may be explained from the 
distribution of the centrifugal forces for the 
high Dean number regime. 

The results for the various aspect ratios 
presented in Fig. 13 show that for the high Dean 

20. 

16- 

FIG. 13. (f Re)/(f Re)o vs. K with aspect ratio y as a para- 
meter. 
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number regime, the value of (fRe)/(fRe)c 
changes linearly with Dean number K. Conse- 
quently, one may write (fRe)/(fRe)o - Km 
where m depends on aspect ratio. For example, 

(fRe)/(fRe), x 0-225K0’3g 

for y = 1 and lo2 < K c 15 x 10’. 

Comparison of the result from the present 
analysis for curve~-I square channel with the 
results available in the literature is of consider- 
able interest and is shown in Fig. 14. One can 
see that the present study covers the Dean 
number ranging from small to a reasonably high 
region where no other work is available in the 
literature. One numerical datum at a quite high 
Dean number is also plotted in Fig. 14 for com- 
parison and shows a very good agreement with 
Ludwieg’s experimental data [6]. Mori and 
U&da’s analysis [14] using boundary layer 
approximation for the high Dean number agrees 
well with Ludwieg’s experimental data up to a 
certain Dean number. Beyond that the experi- 

mental data by Ludwieg are suspected to be in 
the turbulent region The two curves given by 
Mori and Uchida represent the first and second 
approximations. 

Observation of the result from the present 
numerical analysis and the results from Ludwieg 
f6] and Mori and Uchida [ 141 for curved square 
channel shows clearly that a reasonable estimate 
can be made for the flow resistance with the Dean 
number ranging from 150 to 1000 where cur- 
rently accurate analytical solution is not avail- 
able. 

4.6 Heat transfer 
The overall heat transfer characteristics will 

be examined next. The graphical results for the 
Nusselt number ratio iVu/(Nu), versus Dean 
number are shown in Fig. 15 for the aspect 
ratios y = O-2,05,1,2 and 5 with Pt = 0.73. As 
noted earlier, the effect of Prandtl number on 
temperature field is considerable. This is also 
reflected in heat transfer results shown in Fig. 16 
where Nu/(Nu)~ is plotted against K for a curved 

IO.0 

80- 0 Present work (M=32, N= 16 with cl =1.0X lO-s) 

A Present work (M=64. N=32 with sl=O.5 X iOR 
for momentum equations) 

Co_ @@ Mori and Uchida l boundary-layer approximation) 

0 Ludwieg (experiment) 

4.0- 

FIG. 14. Comparison of the results for friction factor from 
this work with the theoretical and experimenti results 

available in literature (7 = 1). 
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24 
t 

K 

FIG. 15. (Nu)/(Nu), vs. K with aspect ratio y as a parameter 
and Pr = 0.73. 

14 

12 

'0 
10-l 100 IO IO 

/8 Q h‘ 

K 

FIG. 16. (Nu)/(Nu),, vs. K with Prandtl number Pr as a parameter 
in a curved square channel y = 1. 
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square channel with Pr = 0,0-i, 0+71,~73,1,10, 
102, lo3 and 104. It is seen that an asymptotic 
line exists for the heat transfer result too in the 
high Dean number region for a given Prandtl 
number. The following approximate expression 
may be used for the high Dean number regime. 

for 1 ,< Pr < 104, y = 1 and ~#/(~~)~ C 15 

It is of interest to note that, for example, at 
Nu@Vz& = l-6 the distance between two neigh- 
boring curves decreases slightly as Pr increases 
by the same factor. 

The heat transfer result from the present 
analysis is compared with the result from Mori 
and Uchida [t 4] in Fig. 17 for a curved square 
channel y = 1. Mot-i and Uchida [14] show the 
first and second approximations for the ratio 
of Nusselt numbers for Pr = 071 and og. A 
datum from numerical solution at K = 460 is 
also shown in the figure for comparison. Con- 
sidering the case Pr = 0.71, one sees that the 
present result is very reasonable up to a fairly 
high Dean number and suggests clearly that a 
reasonable estimate can be made for the Dean 

number ranging from R = 150 to 1000 as shown 
as a broken line in Fig. 17. 

Mori and U&da’s work [14] shows that an 
asymptotic value exists for the ratio ~~/(~u)~ as 
Pr + co. However, the numerical result from 
this study shows that an asymptotic line for 
Pr = 03 will not be reached at least up to the 
range (Pr = 104) studied in this work. Further- 
more, in [22] it is stated that the Nusselt number 
ratio approaches the ~~pto~c value with the 
increasing Prandtl number for a similar problem 
in curved pipes. Based on the result of this work, 
it appears that an asymptotic value does not 
exist at least up to Pr = 104. On the other hand, 
an asymptotic value does exist for Pr -, 0. 

It is known that as the Dean number increases, 
the effect of the convective terms in the energy 
equation (10) increases for a given Prandtl 
number. As the Prandtl number increases, the 
effect of the convective terms also increases for 
a given Dean number. One can see that the 
Nusselt number increases with the increase of 
the Prandtl number even if the Dean number is 
held constant. The effect of the Prandtl number 
is equivalent to the effect of the Dean number. 
For example, at ~~/~~~~~ = 16, as the Prandtl 
number increases from 10 to 103, the Dean 

Fkx 17. Comparison of heat transfer results from this work witb tbeoretid results available in literature for y = 1. 
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number decreases from K x 20 to K z 2. The 
numerical results based on two different methods 
of obtaining flow and heat transfer results 
discussed in Section 4.1 show that the two 
methods are off by only 0.4 per cent at most for 
all the cases considered. This confirms the 
accuracy of the numerical solutions. From 
equations (18) and (20), one sees that 

The numerical results check excellently with 
the above relations confirming again the accur- 
acy of the numerical solution. The complete 
numerical results for flow and heat transfer as 
well as velocity and temperature profiles for the 
cases other than y = 1 are given in [2]. 

5. CONCLUDING REMARKS 

1. Numerical solution by point successive-over 
relaxation is obtained for laminar forced con- 
vection in curved rectangular channels with 
various aspect ratios for a range of Dean num- 
bers shown in Figs. 13 and 15. The limitation of 
the numerical method is encountered at a 
reasonably high Dean number. The difficulty 
seems to come from the non-linear terms in the 
equations and the fact that viscous term and 
conduction term can be neglected in the core 
region at high Dean number. In spite of this 
difficulty the numerical method has definite 
advantage over the perturbation method [24]. 

2. By using o = 1 for the relaxation factor in 
the high Dean number region, the range of the 
numerical solution in terms of the ratios 
(fRe)/(fRe),, and Nu/(AJu),-, is further extended 
beyond the range studied in [20]. For a curved 
rectangular channel with y = 2 the numerical 
solution is obtained up to the ratios 

(fRe)/(fWc = 1.8 and Nu/(iVu), = 2.2, res- 
pectively. One sees that the range of applica- 
bility of the present numerical solution far 
exceeds that of the perturbation method for 
curved pipe [24]. The numerical method is 
effective for the flow regime with Dean number 

ranging from small to a reasonably high value 
and complements the boundary layer tech- 
nique [ 141. 

3. The effect of Prandtl number on heat transfer 
result is signilicant. The effect of the Prandtl 
number is equivalent to that of Dean number. 
It is pointed out in References [14, 221 that the 
Nusselt number ratio Nu/(Nu), approaches the 
asymptotic value as the Prandtl number ap- 
proaches infinity. The result of this analysis 
shows that the asymptotic line for Pr = cc will 
not be reached at least up to Pr = 104. In E22] 
the heat transfer results obtained from boundary 
layer approximation for Pr = 00 are shown to 
agree with the experimental results obtained by 
Seban and McLaughlin [23] for Pr x 400. 
Based on the result of this analysis it is believed 
that the asymptotic line for Pr = co obtained 
by boundary-layer approximation may lead to 
some error in heat transfer prediction when 
Pr > 400. On the other hand, as Pr -+ 0, the 
heat transfer result approaches the asymptotic 
value as shown in Figs. 16 and 17. One may note 
that the boundary-layer approximation cannot 
be used as Pr + 0. 

4. Comparison of the results from this analysis 
and the results available in the literature [6, 141 
for a curved square channel shows that a 
reasonable estimate can be made for the flow 
and heat transfer results for the Dean number 
ranging from 150 to 1000 where currently 
accurate solutions are not available. 

5. The result of this analysis confirms the 
known fact that the local heat transfer coefficient 
is higher at the outer wall of the curved channel 
than at the inner wall. 

6. It may be worthwhile to point out that the 
assumption 1 in the formulation of the problem 
was introduced to limit the scope of the present 
investigation. The order of magnitude analysis 
for the fundamental equations for the curved 
channel flow [2] shows that another-independent 
dimensionless parameter @JR,) representing 
the curvature effect is required for the case when 
the radius of curvature of the channel is not 
large as compared with D,. The inclusion of the 
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curvature parameter DJRc in the analysis leads 
to more terms such as Coriolis force term in the 
governing equations. One may add that under 
certain conditions the buoyancy force effect on 
forced convection heat transfer in curved chan- 
nels cannot be neglected [2]. 

7. The convergence of the numerical solution is 
ascertained by comparing the numerical results 
using two methods of evaluatingfRe and Nu. 
Comparison of the numerical results with the 
known exact values for the limiting case of 
straight channel (K = 0) shows excellent agree- 
ment also. Some details on the quantitative 
evaluation of the degree of convergence are 
given in [2]. The important question of whether 
the numerical computations converge to the 
physical solution can be answered only partially 
by the rather good agreement of one numerical 
datum with Ludwieg’s experimental data as 
shown in Fig. 14. Similar comparison for the 
heat transfer results is not possible at present 
due to the lack of experimental data. However, 
it is known that Nusselt number results should 
show the same trend as the friction factor results. 
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CONVECTION FOR&E LAMINAIRE DANS DES CONDUITES 
RECTANGULAIRES COURBES 

R6sum6-Le but de cet article est de presenter des rtsultats d’boulement et de transport de chaleur 
obtenus par une methode de surrelaxation ponctuelle successive pour WI tcoulement laminaire permanent 
entierement Btabli dans des conduites rectangulaires courbes sous les conditions aux limites thermiques dun 
flux de chaleur par&al uniforme axialement et dune temperature pa&tale uniforme p&iphbriquement 
a n’importe quelle position axiale. La methode numtrique fournit des solutions jusqu’ii un nombre de 
Dean raisonnablement BlevC pour les allongements = 0,2,0,5, 1, 2 et 5 consider&s dam cette etude. On a 
remarqu6 que la methode des perturbations est appliquable seulement pour la region des nombres de Dean 
relativement bas et que la technique de la couche limite est valable seulement pour le regime des nombres 
de Dean elevts 

Les rtsultats respectivement pour f Re/(f Re), et Nu/(Nu), sont prtsentes graphiquement en fonction 
du nombre de Dean pour Pr =0,73. On montre egalement des exemples typiques pour les protils de 
vitesse axiale et de temperature, les lignes de courant et les protils de vitesse pour l’koulement secondaire 
et les isothermes. 

Pour la conduite de section car&, l’effet du nom& de Prandtl sur le rbsultat du transport de chaleur 
est aussi ttudie. La comparaison du rtsultat a partir de cette analyse et le resultat, pour le regime des 
nombres de Dean elevb dans la conduite carrb courbe, disponible dans la litttrature, montre clairment 
qu’une estimation raisonnable peut &re faite pour les rtsultats d’ecoulement et de transport de chaleur 
pour le nombre de Dean allant de 1SOa 1000 ou des solutions g&ralement priicises ne sont pas disponibles. 

LAMINARE, ERZWUNGENE KONVEKTION IN GEKRUMMTEN RECHTECKKANALEN 

Zmammenfassung-In vorliegender Arbeit werden Ergebnisse ftir die Stromung und den Warmeiibergang 
gebracht, die nach einer punktweisen Uberrelaxationsmethode ftlr station&m voll ausgebildete Laminar- 
striimung in gekriimmten Rechteckkanalen bei achsial einheitlichem WBrmestrom durch die Wand und 
bei peripher einheitlicher Wandtemperatur in beliebiger achsialer Iage erhalten wurden. Die numerische 
Methode liefert Lasungen bis zu einer ziemlich hohen Dean-Zahl fiir Anordnungsverhgltnisse von = 0.2, 
0.5, 1, 2, und 5 wie sie hier zugrundegelegt sind. Es sei bemerkt, dass die Perturbationsmethode nur ftir 
relativ niedriae Dean-Zahlbereiche anwendbar ist und die Grenzschichttechnik nur fiir hohe Dean-Zahlen 
giiltig ist. Fir Pr = 0.73 ist flRe)/f (Re), bzw. Nu/Nu,, in Abhangigkeit von der Dean-Zahl grafisch 
wiedereeeeben. Tvnische Beisniele fur Achsialzeschwindiakeit und Temperaturprofile. Stromlinien und 
GeschwindigkeitsGrofile fiir Sekundiirstriimung und Isothermen werdeh ebenfalls gezeigt. Fur Recht- 
eckkan%le wird such der Einfluss der Prandtl-Zahl auf den Warmetibergang untersucht. Ein Vergleich 
aus dem Ergebnis dieser Analyse und dem Ergebnis fur einen hohen Dean-Zahlbereich zeigt deutlich, 
dass verniinftige Abschatzungen fiir die Striimung und den WLrmeilbergang fur Dean-Zahlen von 150 

bis 1000 gemacht werden konnen, wo gegenwiirtig keine genauen Losungen verfiigbar sind. 

AuuoTaqnn-13 ~aitnoti CTaTbe npP~CTaBLNeHbI pW?ZbTaTbI I10 HCCJIC~OBaHHI0 TenZOObMWa 
peJlaKCa~I$oHHbm M~TO;IOM r3pa8RMTOM JIaMHHapHOM IIOTOKCB HCHpHBJICHHblX npflMOyrOnbHbIX 

KaHaaaX "pi, ABpX TK"BX rpaHMlrHbIX ~C.'IOBvlti: a) paBHOMepH0 pacnpeseneHHbIti Ha CT~HKC 

oceeoRTennoBoBnOTO~i; 6)o~ri~asosaanO nepuMeTppn mO60M OCeBOM Ce~eHmTemnepaTypa 

CTeHH,l. YPIC2IeHHbIM Mf?TO~OM nOJI&VWHbI peUleHMn A.?FI C;OJIbIUEiX w!CeJI &ma ]I[," COOTRO- 

UIeHRJIX CTOpOH,paBHbIX 0,2; 0,5; 1,2 H 5. OTMWleTCfl, IlTO MeTO;t BOZMJ'lIWlIiit npINeHlfV 

TOJIbKO $IR OTHOC~TeJIbRO MaJIbIX WKejI &lHa, TOrZ3 IEaK npH6nmfeHHe norpaaml~or~r 

CJIOR CnpaBe&nmo TOxbKO ;1nf3 6OJTblWiX aHaYeHdi WC,7a Ama. 

np~130~RTCfl :3aBiKHMOCTM f&/(f&)o II NU/(NU)o OT WIC3a d3Ill:l npil fr = 0,7:1. 

IlpnBeAeHbI XapaKTPpHblP paCn[JeaexCtIHn TeMI,e~aTy~)bI 11 CIfOpOCTLi n0 OCc1, K3OTepMbI. 

TH0r0 CCHCHHB &~CC.W;ZORWIOCb BJIMHHlle 113. Tk?Il.7IOO6MeH WCna ITpaHATJIIR. 11.1 I~paBHCHHJl 
IIonyHeHIIBIX pe:Iy.?bTaT0B II IIHeJ0uHrxcn AarIJrbIx BbITeIiaeT, HTo B H~HBO~HH~I%HOH HaHane 
HBanpaTIIoro CCHCHIIH MOHHIO paCcwTaTb rIZ;IpOWHaMHKy 14 TennOO6MeH B ~HanaSOHC' 

M:3MeHPHI,H ',IlCPJI @Ha OT 150 ]I0 ltK)tl, aJIB HOTOpOrO CHIC Hf!T TOYHOrO peIIH?HHH. 


